Drilling Bits I

Outline

- · Bit classification
- Rock failure mechanisms and drilling mechanisms
- · Roller cone bits
- IADC Classification for Roller Cone Bits
- PDC bits
- · Natural diamond bits
- · IADC bit wear
- Bits Strength and weakness

Rock Failure Mechanism

- · Basic mechanisms of rock removal:
 - 1. Wedging
 - 2. Scraping and grinding
 - 3. Erosion by fluid jet action
 - 4. Crushing
 - 5. Torsion or Twisting

One mechanism will be more dominant than the other for a specific type of bits

We will talk about drag bits and roller cones

Failure mechanisms

Shear Failure

- PDC cutters are used to shear the rock with continuous scraping motion
- Shear failure will also occur when using aggressive roller cone bits

Compressive Failure

- Roller cones are designed to crush the rock
- Compressive failure might occur when using a dull PDC ROLLER CONE BIT CYCLIC COMPRESSION

Drag Bits

Dragbitsdrillbyphysically"plowing" or "machining" cuttings from the bottomof the hole.

Drag Bits

Cutter may be made from:

- Steel
- Tungsten carbide
- Natural diamonds
- Polycrystalline diamond Compact(PDC)

Compressive and shear drilling mechanism

Compressive and Shear Failure

- Soft/medium mill tooth bits
- Soft/medium insert bits
- PDC bits in hard

Compressive and shear drilling mechanism

• Shear/Compressive Failure

Diamond Bit
CONTIJUOUS
CRUSHING & ABRASION

Roller cone bits

Two types of rolling cutter bits

- Steel Tooth (milled tooth)
- Carbide Tooth (tungsten carbide insert)

Advantages

- For any type of formation there is a suitable design of rock bit
- Can handle changes in formation
- Acceptable life and drilling rate
- · Reasonable cost

Roller cone bits

- Milled Tooth Bit (Steel Tooth)
 - Long teeth for soft formations
 - Shorter teeth for harder formations
 - ■Self-sharpening teeth by using hard facing on one side
 - High drilling rates especially in softer rocks

Roller cone bits

- Tungsten Carbide Insert Bits (TSI)
 - Long life cutting structure in hard rocks
 - · Hemispherical inserts for very hard rocks
 - Larger and more pointed inserts for softer rock
 - · Can handle high bit weights and high RPM
 - (Tungsten carbide is a very hard, brittle

IADC Classification for Roller Cone Bits

Provides a Method of Categorizing Roller Cone Rock Bits

- 4-Character Design/Application Code
- First 3 Characters are NUMERIC
- 4th Character is ALPHABETIC

135M

or

447X

or

637Y

Series

135M or **447X** or **637Y**

FIRST CHARACTER

- · General Formation Characteristics
- Eight (8) Series or Categories
- Series 1 to 3 Milled Tooth Bits
- Series 4 to 8 Tungsten Carbide Insert Bits

The higher the series number, the harder/more abrasive the rock

Define Hardness

Hardness	UCS (psi)	Examples
Ultra Soft	< 1,000	gumbo, clay
Very Soft	1,000 - 4,000	unconsolidated sands, chalk, salt, claystone
Soft	4,000 - 8,000	coal, siltstone, schist, sands
Medium	8,000 - 17,000	sandstone, slate, shale, limestone, dolomite
Hard	17,000 - 27,000	quartzite, basalt, gabbro, limestone, dolomite
Very Hard	> 27,000	marble, granite, gneiss

UCS = Uniaxial Unconfined Compressive Strength

Type

135M or 447X or 637Y

SECOND CHARACTER

- · Degree of formation Hardness
- Each Series divided into 3 or 4 'Types'
- Type1SoftestFormationinaSeries

Increasing Rock Hardness

Type4Hardest Formation in a Series

Bearing & Gage

135M or 447X or 637Y

THIRD CHARACTER

- Bearing Design and Gage Protection
- Seven (7) Categories
 - 1. Non-Sealed (Open) Roller Bearing
 - 2. Roller Bearing Air Cooled
 - 3. Non-Sealed (Open) Roller Bearing Gage Protected
 - 4. Sealed Roller Bearing
 - 5. Sealed Roller Bearing Gage Protected
 - 6. Sealed Friction Bearing
 - 7. Sealed Friction Bearing Gage Protected

What are Bearings?

Bearings are what make the cones on a Tricone spin.

There are four common types of bearings:

- 1- Standard open bearing roller bit
- 2- Air-cooled roller bearings
- 3- sealed roller bearings
- 4- sealed journal (friction) bearings

Roller Cone with sealed roller Bearings

Milled Tooth Bit (Steel Tooth) with sealed roller bearings

Features Available

135M or 447X or 637Y

FOURTH CHARACTER

- · Features Available (Optional)
- Sixteen (16) Alphabetic Characters
- Most Significant Feature Listed
 (i.e. only one alphabetic character should be selected)

IADC Features Available

- A Air Application
- B Special Bearing/Seal
- · C Center Jet
- D Deviation Control
- E Extended Nozzles
- G Gage/Body Protection
- H-Horizontal Application
- J Jet Deflection

- L Lug Pads
- M Motor Application
- S-Standard Milled Tooth
- T Two-Cone Bit
- W Enhanced Cutting structure
- X-Chisel Tooth Insert
- Y-Conical Tooth Insert
- Z-Other Shape Inserts

135M or 447X or 637Y